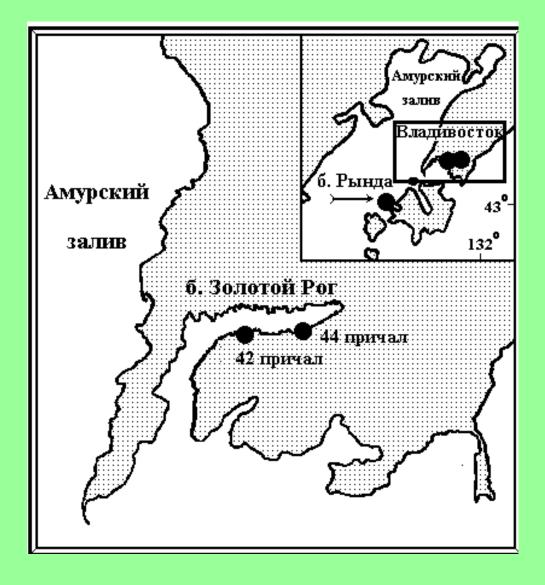

МИКРОВОДОРОСЛИ ПЕРИФИТОНА ПРИБРЕЖНЫХ ВОД Г. ВЛАДИВОСТОКА В УСЛОВИЯХ АНТРОПОГЕННОГО ЗАГРЯЗНЕНИЯ

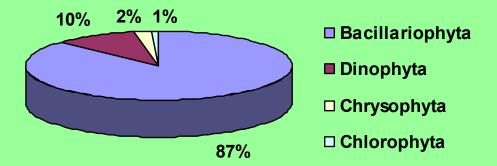

А.А. Бегун

Институт биологии моря им. А.В. Жирмунского ДВО РАН г. Владивосток 2007

<u>Цель настоящей работы</u> - изучение таксономического состава и количественных характеристик микроводорослей перифитона в бух. Золотой Рог (г. Владивосток, залив Петра Великого Японского моря), подверженной антропогенному загрязнению.

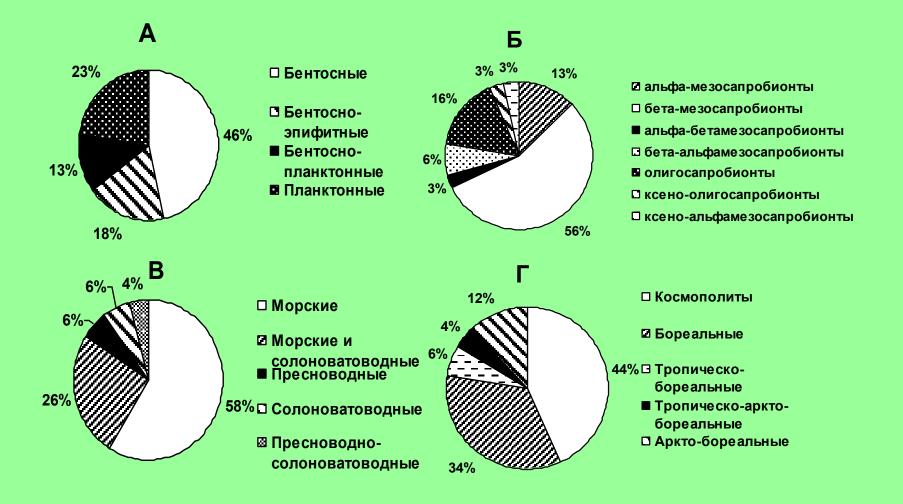
Задачи:

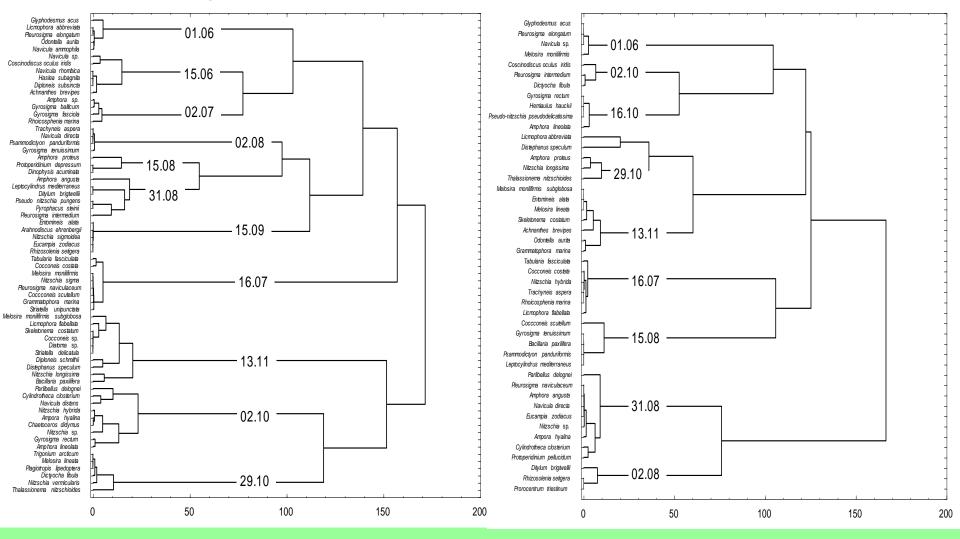
- 1)Установить таксономический состав и эколого-географическую характеристику микроводорослей перифитона.
- 2)Исследовать количественные показатели микроводорослей перифитона в зависимости от типа антропогенного субстрата и времени его экспозиции в море.
- 3)Исследовать количественные показатели микроводорослей перифитона в зависимости от уровня антропогенной нагрузки.


Карта-схема района исследования микроводорослей перифитона в 2000 г.

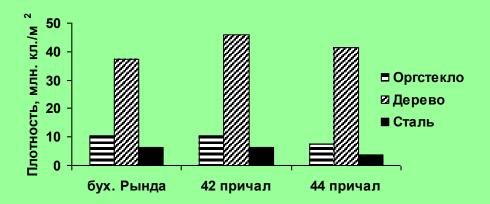
Карта-схема района исследования микроводорослей перифитона в 2001 г.

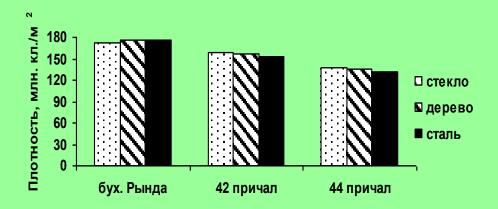
Общая характеристика собранного материала по микроводорослям перифитона в зал. Петра Великого в прибрежных водах г. Владивостока за 2000-2001 гг.

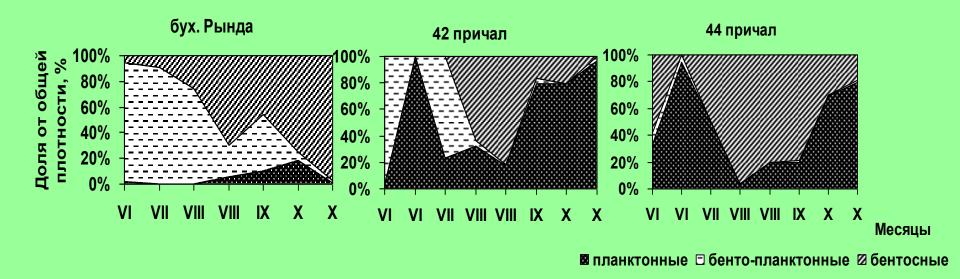

Район исследования	Материал	Период исследования	
бух. Рында, о. Русский (фоновый район) бух. Золотой Рог, 42 причал бух. Золотой Рог, 44 причал (импактные районы)	экспериментальные пластины из оргстекла, древесины и высоколегированной стали X18H10T. Срок экспозиции: а) 15-суток; б) 134-143 суток.		
Уссурийский залив, (фоновый район) бух. Золотой Рог, 44 причал (импактный район)	(фоновый район) пластины из асбоцемента. Срок экспозиции:		


Распределение видов микроводорослей перифитона (в %) по отделам в заливе Петра Великого в прибрежных водах г. Владивостока в 2000-2001 гг.

Всего обнаружено 138 видов и внутривидовых таксонов микроводорослей. Впервые для российских вод Японского моря приводятся диатомовые водоросли: Pleurosigma clevei Grun., Gyrosigma tenuissimum (W. Sm.) Griffith et Henfrey, Amphora caroliniana Giffen, Falcula media var. subsalina Pr.-Lavr., Ardissonia crystallina (Ag.) Grun., Nitzschia hybrida f. hyalina Pr.-Lavr., Nitzschia vermicularis (Kutz.) Hantzsch ex Rabenh., Neosynedra provincialis (Grun.) Williams et Round, Synedra filiformis var. curvata (Ostr.) A.Cl., Diploneis chersonensis Ehr.

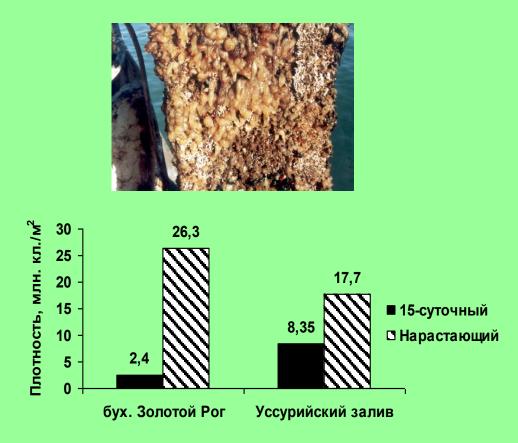

Прослеживалось достаточно высокое сходство видовых списков микроводорослей в зависимости от типов экспериментальных пластин. В бух. Рында общность видов микроводорослей перифитона между субстратами стекло-дерево составила 84 %, стекло-сталь — 74 %, дерево-сталь — 76 %. В бух. Золотой Рог в районе 42 причала - 74 %, 66 % и 76 %, соответственно, и в бух. Золотой Рог в районе 44 причала - 80 %, 78 % и 70 %, соответственно.


Эколого-географическая характеристика видов диатомовых водорослей перифитона по приуроченности к местообитанию (в %) в заливе Петра Великого в прибрежных водах г. Владивостока в 2000-2001 гг. (А — по приуроченности к местообитанию, Б — по отношению к сапробности, В — по отношению к солености, Γ — эколого-географическая характеристика).

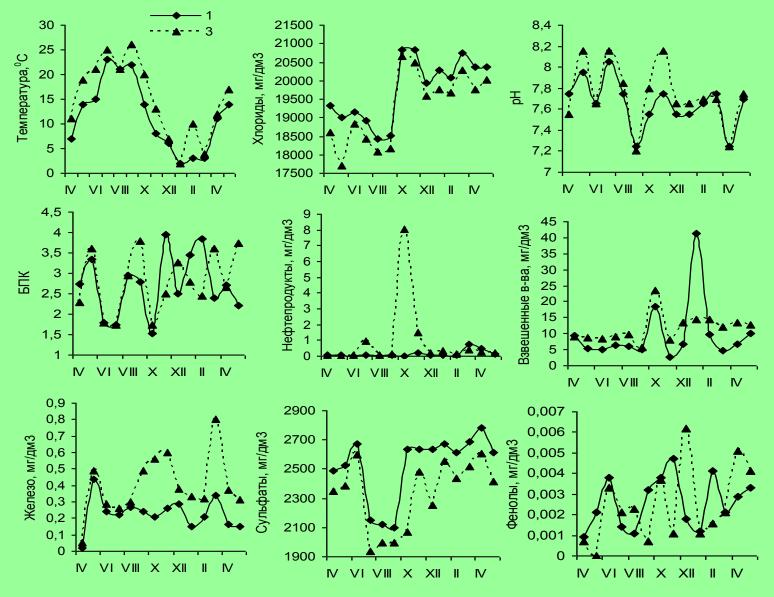

Дендрограммы сходства видов микроводорослей по срокам оседания на экспериментальные пластины в Уссурийском заливе и б. Золотой Рог в летне-осенний период 2001 г., полученные методом Уорда (метрика – квадрат евклидова расстояния)

Среднегодовые количественные показатели микроводорослей перифитона в бух. Рында (о. Русский) и бух. Золотой Рог (районы 42 и 44 причалов) на экспериментальных пластинах из разного материала с 15-суточным сроком экспозиции в летне-осенний период 2000 г.

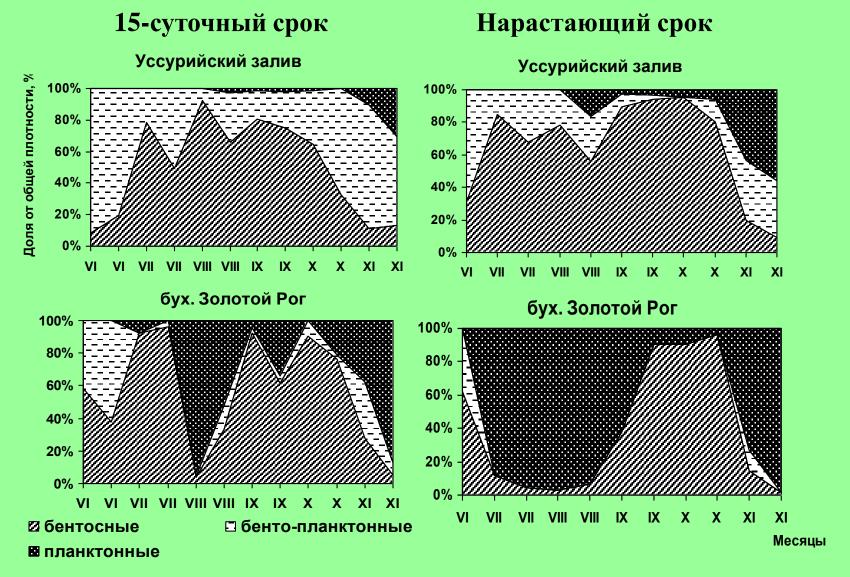
Среднегодовые количественные показатели микроводорослей перифитона в бух. Рында (о. Русский) и бух. Золотой Рог (районы 42 и 44 причалов) на экспериментальных пластинах из разного материала с нарастающим сроком экспозиции в летне-осенний период 2000 г.

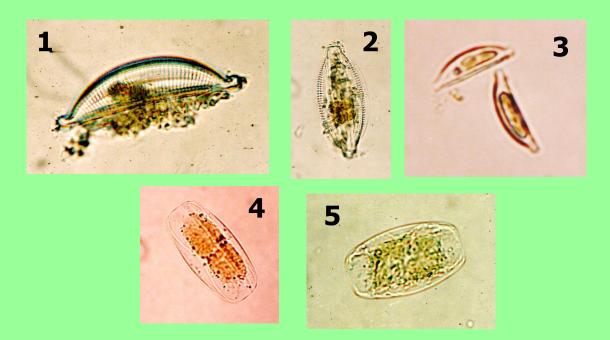


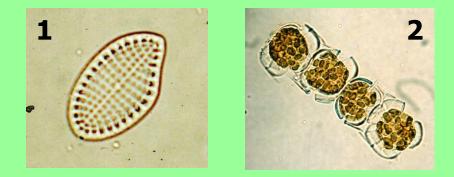
Соотношение плотности основных групп микроводорослей по приуроченности к местообитанию в перифитоне бух. Рында и бух. Золотой Рог (районы 42 и 44 причалов) в летне-осенний период 2000 г.


Средние значения гидрохимических и микробиологических показателей в воде и в микрообрастании в б. Рында и Золотой Рог (районы 42 и 44 причалов) за летне-осенний период 2000 г. (данные лаборатории морской коррозии института химии ДВО РАН)

Гидрохимические и микробиологические показатели	Единицы измерений	б. Рында	42 причал	44 причал	
МОРСКАЯ ВОДА					
Концентрация О2	мг/л	8,88	8,14	7,46	
БПК ₅	_66_	2,57	3,55	3,50	
Величина рН	ед.	8,44	7,89	7,98	
Сапрофиты	тыс. кл./мл	7,7	37,1	63,7	
Нефтеокисляющие бактерии	_66_	0,9	6,6	14,1	
СРБ	_66_	6,8	22,6	22,7	
МИКРООБРАСТАНИЕ					
Сарпофиты	тыс. кл./мл	13,3	22,1	25,9	
Железобактерии	_"-	0,6	6,8	7,5	
Тионовые бактерии	_66_	0,94	66,09	65,0	
Гнилостные бактерии		82,0	156,5	117,5	
СРБ	_"_	45,0	110,1	120,1	
Скорость коррозии стали	г/(м²ч), п х 10-4	33,0	112,5	98,2	


Обросшая пластина - субстрат


Среднегодовые количественные показатели микроводорослей перифитона в бух. Золотой Рог и Уссурийском заливе на экспериментальных пластинах с различными сроками экспозиции в летне-осенний период 2001 г.


Изменение основных гидрохимических показателей воды до и после прохождения системы охлаждения ВТЭЦ-2 в течение года. Условные обозначения: 1 — водозабор, Уссурийский залив; 3 — река Объяснения после территории станции (данные Промышленно-санитарной лаборатории Службы экологии ВТЭЦ-II).

Соотношение плотности основных групп микроводорослей по приуроченности к местообитанию в перифитоне Уссурийского залива и б. Золотой Рог в летне-осенний период 2001 г.

В бух. Золотой Рог отмечено массовое развитие видов-индикаторов органического загрязнения воды *Amphora lineolata* Ehr. (1-3) и *A. caroliniana* Giffen (4-5), способных при обилии РОВ переходить к миксотрофному типу энергообеспечения.

В бух. Золотой Рог эпизодически регистрировались аберрантные формы клеток диатомовых водорослей *Cocconeis scutellum* Ehr. (1) и *Melosira moniliformis* (O. Müll.) C. Ag (2).

выводы

- 1. Получены первые сведения о таксономическом составе микроводорослей перифитона в российских водах Японского моря. Отмечено 138 видов и внутривидовых таксонов микроводорослей из отделов Bacillariophyta (120 видов), Dinophyta (14), Chrysophyta (3) и Chlorophyta (1). Приводятся десять новых для российских вод Японского моря видов диатомовых водорослей.
- 2. На количественные показатели микроводорослей перифитона значительно влияют тип субстрата и время его экспозиции в море. Физико-химические свойства субстрата оказывают значительное воздействие на количественные показатели микроводорослей лишь на начальных этапах его развития.
- 3. В перифитоне фоновых акваторий значительную часть исследуемого периода по плотности преобладали бентосные и бентопланктонные микроводоросли. В перифитоне импактных акваторий преобладали планктонные микроводоросли, оседание которых прослеживалось в периоды их массового развития в планктоне.
- 4. В бух. Золотой Рог в условиях экстремального уровня антропогенного загрязнения отмечены специфические черты развития микроводорослей перифитона, выражающиеся в доминировании видов-индикаторов органического загрязнения, количественном преобладании планктонных форм микроводорослей и их покоящихся стадий, снижении количественных показателей микроводорослей на пластинах с 15-суточным сроком экспозиции, а также наличии морфологических аномалий клеток у популяции диатомовых водорослей *Cocconeis scutellum* и *Melosira moniliformis*.